Noether's Theorem

From the symplectic perspective

Ryan McWhorter

Department of Mathematics The University of Texas at Austin

February 12, 2023

Suppose we have a symplectic manifold (M, ω) and a Lie group G which acts on M by symplectomorphism with momentum mapping $J: M \to \mathfrak{g}^*$. Suppose $H: M \to \mathbb{R}$ is invariant under the action. Then, J is constant on integral lines of X_H . We assume some foreknowledge of differential geometry (manifolds, the Lie/exterior derivative, differential forms, flows, etc)

- We assume some foreknowledge of differential geometry (manifolds, the Lie/exterior derivative, differential forms, flows, etc)
 We explain:
- Symplectic forms and Symplectomorphisms,

- We assume some foreknowledge of differential geometry (manifolds, the Lie/exterior derivative, differential forms, flows, etc)
 We explain:
- Symplectic forms and Symplectomorphisms,
- the momentum map of an action,

- We assume some foreknowledge of differential geometry (manifolds, the Lie/exterior derivative, differential forms, flows, etc)
 We explain:
- Symplectic forms and Symplectomorphisms,
- the momentum map of an action,
- and Hamiltonian vector fields.

A differential 2-form ω is called a symplectic form if \bullet ω is closed (i.e., $d\omega=0)$ A differential 2-form ω is called a symplectic form if

•
$$\omega$$
 is closed (i.e., $d\omega = 0$)

• ω is nondegenerate. i.e. if $\omega(u, v) = 0$ for all $v \in T_pM$, then u = 0.

 $f: M \to M$ is called a symplectomorphism if $f^* \omega = \omega$.

 $f: M \to M \text{ is called a symplectomorphism if } f^*\omega = \omega.$ $\bullet \text{ i.e. } (f^*\omega)_p(X_1, X_2) = \omega_{f(p)}(df_p(X_1), df_p(X_2)) = \omega_p(X_1, X_2)$

Suppose G acts on (M, ω) by symplectomorphism. Then $J: M \to \mathfrak{g}^*$ is called the momentum mapping for G if for all $\xi \in \mathfrak{g}$, $dJ(x) \cdot \xi = i_{\xi_M} \omega := \omega(\xi_M, x)$

Suppose G acts on (M, ω) by symplectomorphism. Then $J: M \to \mathfrak{g}^*$ is called the momentum mapping for G if for all $\xi \in \mathfrak{g}$, $dJ(x) \cdot \xi = i_{\xi_M} \omega := \omega \left(\xi_M, x \right)$ Which is equivalent to • $X_{J(x)\cdot\xi} = \xi_M \equiv \frac{d}{dt} \left(\exp t\xi, x \right) \mid_{t=0}$ (M,W) G-action

Suppose we have $H: M \to \mathbb{R}$.

Suppose we have $H: M \to \mathbb{R}$.

• Then, the vector field X_H is given by

$$i_{X_H}\omega = \omega\left(X_H, -\right) = dH(-)$$

• X_H is guaranteed to exist by the nondegeneracy of ω .

Take $f, g: M \to \mathbb{R}$. f is constant on integral curves of X_g iff g is constant on integral lines of X_f iff $\{f, g\} = 0$

Recall that $\{f, g\}$ denotes the Poisson bracket of f and g; $\{f, g\} = -i_{X_f}i_{X_g}\omega = -L_{X_f}g$ Suppose F_t is the flow of X_f , and that g is constant on it.

•
$$0 = \frac{d}{dt} (g \circ F_t) = \frac{d}{dt} (F_t^* g) = F_t^* L_{X_f} g = -F_t^* \{f, g\}$$

Recall that $\{f,g\}$ denotes the Poisson bracket of f and g; $\{f,g\} = -i_{X_f}i_{X_g}\omega = -L_{X_f}g$ Suppose F_t is the flow of X_f , and that g is constant on it.

•
$$0 = \frac{d}{dt} (g \circ F_t) = \frac{d}{dt} (F_t^* g) = F_t^* L_{X_f} g = -F_t^* \{f, g\}$$

• $F_t^* \{f, g\} = 0$ for all t occurs iff $\{f, g\} = 0$

Suppose we have a symplectic manifold (M, ω) and a Lie group G which acts on M by symplectomorphism with momentum mapping $J: M \to \mathfrak{g}^*$. Suppose $H: M \to \mathbb{R}$ is invariant under the action. Then, J is constant on integral lines of X_H .

Let F_t be the flow of X_H . If $\xi \in \mathfrak{g}$, $H\left(\Phi_{\exp t\xi}(x)\right) = H(x)$ by the invariance of H. Differentianting wrt t at t = 0, we obtain

$$\bullet dH(x) \cdot \xi_M = 0$$

Suppose we have a symplectic manifold (M, ω) and a Lie group G which acts on M by symplectomorphism with momentum mapping $J: M \to \mathfrak{g}^*$. Suppose $H: M \to \mathbb{R}$ is invariant under the action. Then, J is constant on integral lines of X_H .

Let F_t be the flow of X_H . If $\xi \in \mathfrak{g}$, $H(\Phi_{\exp t\xi}(x)) = H(x)$ by the invariance of H.

Differentianting wrt t at t = 0, we obtain

$$\bullet dH(x) \cdot \xi_M = 0$$

By the definition of the Lie derivative,

$$\bullet \ L_{\xi_M}H = 0$$

Suppose we have a symplectic manifold (M, ω) and a Lie group G which acts on M by symplectomorphism with momentum mapping $J: M \to \mathfrak{g}^*$. Suppose $H: M \to \mathbb{R}$ is invariant under the action. Then, J is constant on integral lines of X_H .

Let F_t be the flow of X_H . If $\xi \in \mathfrak{g}$, $H(\Phi_{\exp t\xi}(x)) = H(x)$ by the invariance of H.

Differentianting wrt t at t = 0, we obtain

$$\bullet dH(x) \cdot \xi_M = 0$$

By the definition of the Lie derivative,

$$\bullet \ L_{\xi_M} H = 0$$

By the definition of the momentum map, this is equivalent to

$$L_{X_{J(x)} \cdot \xi} H = 0$$

Suppose we have a symplectic manifold (M, ω) and a Lie group G which acts on M by symplectomorphism with momentum mapping $J: M \to \mathfrak{g}^*$. Suppose $H: M \to \mathbb{R}$ is invariant under the action. Then, J is constant on integral lines of X_H .

Let F_t be the flow of X_H . If $\xi \in \mathfrak{g}$, $H\left(\Phi_{\exp t\xi}(x)\right) = H(x)$ by the invariance of H.

Differentianting wrt t at t = 0, we obtain

$$\bullet dH(x) \cdot \xi_M = 0$$

By the definition of the Lie derivative,

$$\bullet L_{\xi_M} H = 0$$

By the definition of the momentum map, this is equivalent to

•
$$L_{X_{J(x)},\xi}H = 0$$

By the Poisson bracket

$$\blacksquare \{H, J(x) \cdot \xi\} = 0$$

By the constancy lemma,

$$\frac{d}{dt} \left(J(F_t(x)) \cdot \xi \right) = 0$$
 By the property of flow, $F_0(x) = x$. Thus,

$$\quad \quad = J(F_t(x)) \cdot \xi = J(F_0(x)) \cdot \xi = J(x) \cdot \xi$$

And so J is constant on integral curves of X_H , because H is preserved by the group action.