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Noether’'s Theorem

Suppose we have a symplectic manifold (M,w) and a Lie group G which
acts on M by symplectomorphism with momentum mapping J : M — g*.
Suppose H : M — R is invariant under the action. Then, J is constant on
integral lines of Xpy.
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Preliminaries

= We assume some foreknowledge of differential geometry (manifolds,
the Lie/exterior derivative, differential forms, flows, etc)
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Preliminaries

= We assume some foreknowledge of differential geometry (manifolds,
the Lie/exterior derivative, differential forms, flows, etc)
We explain:

m Symplectic forms and Symplectomorphisms,
m the momentum map of an action,

m and Hamiltonian vector fields.
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Symplectic Forms

A differential 2-form w is called a symplectic form if

m w is closed (i.e., dw = 0)
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Symplectic Forms

A differential 2-form w is called a symplectic form if
m w is closed (i.e., dw = 0)

m w is nondegenerate. i.e. if w(u,v) =0 for all v € T,M, then u = 0.
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Symplectomorphisms

f:M — M is called a symplectomorphism if f*w = w.
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Symplectomorphisms

f: M — M is called a symplectomorphism if f*w = w.
mie. (f*w)p (Xl,XQ) = wf(p) (dfp(Xl), dfp(Xg)) = wp(Xl,Xg)
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The Momentum Mapping

Suppose G acts on (M, w) by symplectomorphism.
Then J : M — g* is called the momentum mapping for G if for all ¢ € g,

mdJ(x) & =ig,w = w(én, )
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The Momentum Mapping

Suppose G acts on (M, w) by symplectomorphism.
Then J : M — g* is called the momentum mapping for G if for all ¢ € g,

mdJ(x) & =ig,w:i=w(&m,x)
Which is equivalent to

8 Xja)e = Em = G (expté,z) |1

6 (M)

G o a"* jon
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Hamiltonians

Suppose we have H : M — R.
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Hamiltonians

Suppose we have H : M — R.
m Then, the vector field X is given by

ixpw=w(Xyg,—)=dH(—)

m Xy is guaranteed to exist by the nondegeneracy of w.
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Constancy Lemma

Take f,g: M — R. f is constant on integral curves of X, iff g is
constant on integral lines of X iff {f, g} =0
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Constancy Lemma: Proof

Recall that {f, g} denotes the Poisson bracket of f and g;

{fag} = _inngw = _Lng
Suppose F} is the flow of Xy, and that g is constant on it.

m0="2(goR) =4 (F'g) =F'Lx,9g=—-F{fg}
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Constancy Lemma: Proof

Recall that {f, g} denotes the Poisson bracket of f and g;

{fag} = _inngw = _Lng
Suppose F} is the flow of Xy, and that g is constant on it.

= 0= (90 F) =G (Ffg) = F{Lx,9 = —F{f.g}
m F{f, g} =0 forall t occurs iff {f,g} =0
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Noether's Theorem: Proof

Suppose we have a symplectic manifold (M,w) and a Lie group G which
acts on M by symplectomorphism with momentum mapping J : M — g*.
Suppose H : M — R is invariant under the action. Then, J is constant on
integral lines of Xp.

Let F} be the flow of Xp. If £ € g, H (Pexpre(v)) = H(x) by the
invariance of H.
Differentianting wrt ¢ at ¢ = 0, we obtain

m dH(z) &y =0
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Noether's Theorem: Proof

Suppose we have a symplectic manifold (M,w) and a Lie group G which
acts on M by symplectomorphism with momentum mapping J : M — g*.
Suppose H : M — R is invariant under the action. Then, J is constant on
integral lines of Xp.

Let F} be the flow of Xp. If £ € g, H (Pexpre(v)) = H(x) by the
invariance of H.
Differentianting wrt ¢ at ¢ = 0, we obtain
mdH(z) &y =0
By the definition of the Lie derivative,
] L5MH =0
By the definition of the momentum map, this is equivalent to
® Lx,, H=0
By the Poisson bracket,
= {H,J(x) £} =0
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Noether's Theorem: Proof Continued

By the constancy lemma,
= 4 (J(Fua)-€) =0
By the property of flow, Fy(z) = z. Thus,
= J(Fy(z))- & = J(Fo(x)) - §=J(x)- ¢
And so J is constant on integral curves of Xy, because H is preserved by
the group action.

Ryan McWhorter Fall 2021 DRP UT Austin February 12, 2023 11 /11



	The Section

