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The Uncertainty Principle

Claim

The Schrödinger-Robertson inequality

∆X2∆P 2 ≥ Cov (X,P )2 +
1

4
ℏ2

can be considered a consequence of symplectic geometry if covariances are
treated as measurement error.
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Disclaimer

We are not claiming that quantum mechanics is broadly a
consequence of symplectic geometry.

We’re just giving a limited taste of it in a classical setting.
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Preliminaries

We assume some foreknowledge of differential geometry (manifolds,
the Lie/exterior derivative, differential forms, flows, etc)

We explain:

Symplectic forms and symplectomorphisms,

and Hamiltonian flows (which is the bedrock of classical mechanics).
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Symplectic Forms

A differential 2-form ω is called a symplectic form if

ω is closed (i.e., dω = 0)

ω is nondegenerate. i.e. if ω(u, v) = 0 for all v ∈ TpM , then u = 0.
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Symplectomorphisms

f : M → M is called a symplectomorphism if f∗ω = ω.

i.e. (f∗ω)p (X1, X2) = ωf(p) (dfp(X1), dfp(X2)) = ωp(X1, X2)
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Hamiltonians

Suppose we have H : M → R.

Then, the vector field XH is given by

iXH
ω = ω (XH ,−) = dH(−)

XH is guaranteed to exist by the nondegeneracy of ω.

The flow of a Hamiltonian is simply the flow of this Hamiltonian
vector field
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Phase Space

Where does physics happen?

Phase space

In physics, we usually take the space of positions to be R3.

The phase space of R3 is
(
T ∗R3,

∑3
i=1 dpi ∧ dqi

)
Generically, the phase space of Rn is (T ∗Rn,

∑n
i=1 dpi ∧ dqi)
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Symplectic Capacities

What are they and why are they useful?

A symplectic capacity assigns a non-negative real number to an
arbitrary region of R2n

Capacities give us a way to determine if one subspace doesn’t
symplectically embed into another
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Symplectic Capacities — Definition

Suppose c is our capacity.

Monotonicity: if there exists a symplectic embedding ϕ : A ↪→ R2n,
such that ϕ(A) ⊂ B c (A) ≤ c (B).

Conformality: for all λ ∈ R+, c (λA) = λ2c (A,ω)

Non-triviality: c
(
B2n(1), ω0

)
> 0 and c

(
Z2n(1), ω0

)
< ∞. (Here(

Z2n(1), ω0

)
is a cylinder of radius 1).

This last requirement is really difficult to satisfy! As a result, there
are very few symplectic capacities.
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Symplectic Capacities — Gromov’s Width

An example of a capacity:

cgw (M,ω) = cgw (M) = sup{πr2|B2n (r) embeds symplectically into M}
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Gromov’s Non-Squeezing Theorem

Theorem

If there exists a symplectic embedding of
(
B2n (r) , ω0

)
into(

Z2n (R) , ω0

)
, then r ≤ R.

This is equivalent to proving that Gromov’s width satisfies the
symplectic capacity axioms.

We don’t provide proof of Gromov’s theorem/proof of the existence
of Gromov’s width - that’s beyond the scope of this presentation.
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Gromov’s Non-Squeezing Theorem — Illustration

Theorem

If there exists a symplectic embedding of
(
B2n (r) , ω0

)
into(

Z2n (R) , ω0

)
, then r ≤ R.
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Back to the Uncertainty Principle

Recall:

Claim

The Schrödinger-Robertson inequality

∆X2∆P 2 ≥ Cov (X,P )2 +
1

4
ℏ2

can be considered a consequence of symplectic geometry if covariances are
treated as measurement error.
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What is the Uncertainty Principle

This is usually phrased as the fact that there is a fundamental
physical limit on how precisely you can measure position and
momentum, and that there is a trade off between precision of
measuring position and precision of momentum.
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Setting Up the Uncertainty Principle

Suppose we start out with a bunch measurements of a physical system in
(T ∗Rn,

∑n
i=1 dpi ∧ dqi).

First, we want to find an ellipsoid J that contains these points with
the smallest volume. J is of the form (z − z̄)T M−1 (z − z̄) ≤ m2

0 for
some M and some m0.

m2
0 is determined by the distribution of observations in phase space.

For normally distributed points, m0 = χ2
0.5(2n)
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Capacity of an Ellipsoid

In order to derive the uncertainty principle, we’re going to have
compute the capacity of an ellipsoid.

Capacities don’t in general agree, but they do in the case of phase
space ellipsoids (we won’t show why though).
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Capacity of an Ellipsoid: Derivation

Let cgw be Gromov’s width, and let Ωell be the ellipsoid zTMz ≤ 1
centered at z̄ = 0.

Capacities are invariant under symplectomorphisms, so we can center
our ellipsoid at z̄ = 0

By Williamson’s diagonalization theorem, there is a symplectic matrix

S such that STMS =

[
Λ

Λ

]
with Λ = diag(λ1, · · · , λn)

Thus, S (Ωell) =
∑n

i=1 λi

(
x2i + y2i

)
≤ 1.

Thus, we have cgw (Ωell) = cgw (S (Ωell))
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Capacity of an Ellipsoid: Derivation

Let cgw be Gromov’s width, and let Ωell be the ellipsoid zTMz ≤ 1
centered at z̄ = 0.

Suppose there’s a symp. embedding sending B(R) inside (Ωell).

Then, there is a symp. embedding sending B(R) inside the cylinder

Z
(√

1/λi

)
= x2i + y2i ≤ λi for all eigenvalues λi.

In light of the non-squeezing theorem, the capacity of the ellipsoid
must be at least equal to the capacity of the smallest cylinder,
Z (1/λmax).
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Conclusion

Let’s return to our minimum volume ellipsoid, J . We can conclude two
things:

Firstly, since symplectic capacities are invariant under
symplectomorphism, and since physical systems evolve under
time-dependent symplectomorphisms, we have that the capacity of J
doesn’t vary as a function of time.

With some more statistics and linear algebra, you can relate this
capacity of J into a capacity of a covariance ellipsoid, and derive the
full Schrödinger-Robertson Uncertainty Principle
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